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SUMMARY

The general properties are investigated of equations utilized in the
work [1] for describing the rotation of the orbital plane. Analogy is es-
tablished between the equation describing the variation of the lateral angu-
lar deflection of the satellite from the fixed plane, and the equation for

quasi inear oscillations of the mechanical system with one degree of freedom.

Certain characteristic peculiarities of spatial motion in the central
field are illustrated on examples of isolated solutions.

*

1. In the work [1] we find the equations describing the rotation of
satellite orbit plane:

dY1
do Y
dYZ Jz
" + wp y3 Y (1.1)
dY3 _ Jz
dv WV

Here j_ is the vector component of the perturbing acceleration,normal to

the osculating plane of the orbit, y = 1/r, r 1is the gcocentrical radius- vec-

tor of the satellite, p is the focal parameter of the orbit, u is the product

of the gravitational constant by the mass of the Larth. The variable v is de-

termined by the equation

dv

—_— .—.712
o Yup v2,

(1.2)
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the variables v, v v are expressed through orbit inclhimation 1 and the lati-
tude argument a (Fig.l) with the aid ol the formulas )
Y1 == sinisin u,
Y2 = sin i cos u, (1.3)
Y3 == COs i,.l

As follows from Fig.1l, variable v dcter-
mines the value of the sine of satellite's
deflection angle from the fundamental coordi-
nate plane &n

Y1 = sin . (1.4)
Fig.1 Let us assume the terrestrial equatorial

plane being the coordinate plane gn. Then ¢

will represent the geographical latitude of
the satellite.

Let us ascertain the geographical significance of variable Y,- From the
spherical triangle in Fig.l follows the dependence

tgicosu = clg §, (1.5)

where 6 1s the angle between the orbit and the meridional planes. Taking
into account (1.3), formula (1.5) may be rewritten in the form

Y2 == y3clg o. (1.6)

For the angle X, constituted by the meridional plane and the plane
(Fig.1), we may obtain the following equation:

d}\. . '\73
dv - 1"“Y‘2.

(1.7)

Let @ be the angular velocity of Earth's rotation; then, equation

dhr . Y3 dt
dv 1 — yit —dj

will determine the variation of satellite's geographical longitude Ap
For the sake of illustration we shall consider two examples.
1) Assume that the orbit plane is not perturbed,
Postulating j, = 0, we shall obtain from Eqs. (1)

vi=Asin (v4+B), g, = Acos (v+ B), 3=y = cos i, (1.8)



where A == V1 - yu? == sin i, I = arcly Y1 — uy (the index 0 corresponding to the
initial data at v = (). Yo

According to (1.6), (1.8), the variation of the angle § will be deter-
mined by the {ormula

elg & =g io cos (v 4 o). (1.9)

From Eq.(1.7) we shall obtain the expression for the angle A

%= arclg [cos ip1g (v - ue)] -+ C. (1.10)
2) Let us consider the motion of the satellite in the assumption that
k = 17 /upy maintains a constant value. In this case the satellite's radius-
vectot describes in the inertial space a cone with an aperture angle equal to
m — 2arc tgk (sce [1]). Therefore, independently from the variation of orbit
shape in its instantaneous plane, the projection of satellite's trajectory
on the Earth's surface will have the shape of a small circle (without taking
into account the Earth's rotation). Let us consider the solution correspond-
ing to the initial conditions v,(0) = v,(0) = 0,v5(0) = 1 (i(0) = 0),

k U
Y= ——_*_m(i —cos Y1+ k2v),

B
Yz——;/iq_lz-sm‘;/i—{—kzv, (1.11)

Y3 = 1+k2(1+7‘32°051/1+k2v)

lHence we find the expressions for the angles ¢, A, § (see (1.4), (1.6),
(1.7) at the additional condition Ax(0) = 0).

I —
q == aresin [4—1 nyE (I —cosy T { 20 ]i, (1.12)
pow= II(I,{IVl1>f A Mn +—/. : ~) (1.13)
- L2 4 cos —}— bt -
] e ‘.> < / RN 1 .
O = arecly ( A ' ! . - ! (1.14)
I Eop oA cos ) g A

Formulas (1.12), (1.13) generalize the results obtained in the work |2]
{for the case of circular orbit.

2. Iqs.(1) admit the {irst integral
BT EAE R i 2.1)

with the aid of which the system of lIgs. (1) may be reduced to a single dif-
ferential equation ol sccond order
d*y 4

dv2

dyr
e ) ' (22)



where U(v) = j, /upy?.

Eq.(2.2) corresponds to the case y3 >0 (0 €1 <90°); for v3< 0
(90° < 1 < 180°) the square root in the right-hand part must be taken with
the sign minus.

According to the solution found for yv;{v), the angles i and A are deter-
mined by the formulas B

i == arceos ;/71 . Vi — ((/\;I_/;/I;)_Z"
;= \ j:)f‘i(fﬁ'fh;ﬁ
o { — v

de 4,

Eq.(2.2) may be considered as the equation of oscillations of a cer-
tain mechanical system of unit mass with natural frequency w = 1, being under
the action of an external nonlinear perturbation.

The analogy given is quite remarkable. Hence it follows that the solu-
tion of Eq,(2.2) will have properties inherent to the so-called quasilinear
oscillating systems. At the same time thz appearance of such effects as
various-types of resonance oscillations, periodical or nearly -periodical
oscillations, autooscillations, 1s possible [3, 4].

Let us consider as an example the problem of rotation of satellite's
elliptical orbit plane with the help of time-constant in magnitude small
perturbing acceleration j_, normal to the osculating orbital plane. In this
case the variable coefficfent U(v) in the right-hand part of Eq,(2.2) has
the form

V= i oo =) (2.3)

wherce j,, n, p, e, vy are constants [1]1. Inasmuch as the frequency of the
perturbing force coincides with system's (2.2) natural frequency, 1t is

obvious that a resonance case takes place. Indeed, let us consider the so-
lution corresponding to zero initial conditions
el g

de v==0

(vio = 0, - ;
i. ¢., the initial orbit plane coincides with the plane &n). This solution
should be represented in the first approximation in the form [5]

vy, = A sin (v + B), (2.4)

where A== sinder, M= = conxl,
s j: I

— o

— e e == - - ) hU=

3
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Therefore, a typical manifestation of resonance takes place: the small
perturbing force leads to a significant variation (from 0 to 1) of coordina-
te's vy, oscillation amplitude.

The physical signilicance of the solution (2.4) consists in that the
influence of the considered perturbing acceleration leads to monotonic rota-
tion of the orbital plane around the line of apsides, remaining fixed in the
inertial space.

The analogy of Egs.(1.1) with the equation of forced oscillations of the
quasilinear mechanical system allows us to apply the methods of the theory
of nonlinear oscillations when investigating the problems linked with orbit
plane rotation [3, 4].

5. The case presented in section 2 shows that the oscillating character
of quantity y; or angle § variation during the action of a small perturbing
force is maintained over a long time interval even in the resonance case

¢ = arc sin JA sin (v + B)].

It 1s clear, a priori, that in order to obtain, for example, the mono-
tonic dependence ¢(v), it is necessary to assign in the right-hand part of
Eq.(2.2) a function j_(v), either great in magnitude or rapidly rising. Such
a qualitative variatidn in the character of dependence ¢(v) will obviously
require significant expenditures of characteristic velocity

AV = [i.|a.
Let us consider the case when the dependence ¢(v) has the form
¢ = av + ¢, (3.1)
where o and ¢ are constants ([a| < 1).
According to (3.1), we shall have
v = sin (v - o),
V2 == @ cos (ar + o), (3.2)

vo= J1 - «2cos (av 4 ).

As may be seen from (1.6). at an assigned law of latitude ¢ variation
the angle 6 maintains the constant valuc ctg s = o /V1—a?, i. e., the
projection of satellite's orbit on the ground surface has the form of loxo-
drome (Fig.2). The constant o is linked with the angle § by the simple de-
pendence

o = COS & (3.3)




L

Taking into account (3.2), (3.3), we shall {ind the angle i from
LEq.(1.7)
1 1 + sin (av o)
v=Ligoul e
Zg 1 1 — sin (av + o) te (3.4)

It is evident that the preassignment of either the dependence (3.1) or
(3.2) leads to the inverse problem of the determination of the law of compo-
nent j, variation of the perturbing acceleration (or, to be more precise,
of the quantity jz/upy3). Indeed from Eq.(2.2) we obtain outright

i T @tg(av + o). (3.5)
upy?

Therefore, in the case considered the component j, must increase bound-
lessly over the interval v -- vg = ( /2 — ¢9)/a , corresponding to the
attainment of latitude's maximum value ¢ = 7/2.

Note that the orbit may, in general
case, change arbitrarily its shape under
the influence of the comp nent of the per-
turbing acceleration acting in the oscu-
lating plane of the orbit, whereupon the
quantities p and y will be certain functions
of the variable v. In the simplest case,
when the orbit maintains in its instanta-
neous plane a circular form, we shall have
p = const.; y = const. At the same time
formula (3.5) will determine the law of
lateral overload variation j, /g, (g, =

2 . . . Z .
= u/p“ being the gravitation acceleration
at circular orbit height).

& Showvn in Fig.3 are the dependences of
the suantity j, / wy?3 on time (the number
of satellite revolution T = v / 27 being

plotted in abscissa), corresponding to various values of the angle §. The
initial value of the latitude ,
Xy was taken equal to zero Jpapy — _
(8or ¢, >0 the origin of the 50

coordinates shifts along the
abscissa axis by the quantity
$o/2m cosS ).

25~

It 1s obvious that with
the help of ILq.(2.2) we may
analogously find the law of
variation of the component g b5
j_ of the perturbing acce- Fig.3

’2.
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leration and in the general case, when the projection of the satellite tra-
jectory ¢(v) 1s preassigned in an arbitrary form.

xsxkx 1 HE END  saxsx
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